

Smart farms for the future

Bob Rees, SRUC, Edinburgh, UK

Leading the way in Agriculture and Rural Research, Education and Consulting TRUE General Assembly meeting, Athens, 16-20 April 2018

Smart farms for the future

TRUE General Assembly meeting, Athens, 16-20 April 2018

Bob Rees, SRUC, Edinburgh, UK

Legumes in European agriculture

- In 2013 grain legumes were produced on 1.8 M ha of land (less than 2% of the arable area)
- Grain legume production has shown a continuing decline in Europe over the past 50 years despite increasing consumption
- The inclusion of legumes within farming systems provides a wide range of benefits
- What is the problem?

Changes in areas planted with selected European legume crops

Scottish cropping

Summary of N flows in Europe

Sutton et al 2011, European Nitrogen Assessment

European Strategy for the promotion of Protein Crops

- It is time to implement a major strategic European vegetable protein supply plan based on the sustainable development of all the crops grown throughout the EU
- This change implies a substantial alteration of our production systems to meet the requirements of the circular economy and of agroecology

Barriers to increased legume cultivation in Europe

•Some reflections from the Legume Futures Community

- Yield stability and cost
- Lack of understanding of long-term benefits vs short-term gain
- Lack of adapted cultivars Winter-hardy, autumn-sown crops desired in Oceanic, Boreal and Continental. Earliness needed in grain legumes for Mediterranean, Boreal and Oceanic
- Different crops suit different soil types, but this conflicts with feed industry's desire for uniformity
- Need for knowledge exchange

The need for smart solutions

- Develop an integrated understanding of the social, economic and environmental impacts of legume supported cropping
- Develop improved supply chains
- Develop locally tailored solutions

Crop rotation comparisons (selection)

Country, Region	Non- legume rotation	Gross margin (Euro)	N leaching (kg/ha)	N ₂ O (kg/ ha)	Legume rotation	Gross margin change	Leaching change	N₂O change
Romania	Rapeseed Maize Wheat	432	13	3.5	Soybean Maize Wheat Rapeseed	+86	+1	-0.7
Sweden	Rapeseed Wheat Linseed Wheat S barley	644	34	3.7	Rapeseed Wheat Fababean Wheat S barley	-51	0	-1.3
Germany	Rapeseed Wheat S barley	130	28	4.7	Rapeseed Wheat Rye Rye Pea	-19	-8	-1.2

		Rotat	ions			GM without all pre-crop effects	add. revo crop o	enue pre effect	GM with all pre- crop effects
							winter rape	legume	
						[€/ha]	[€/ha]	[€/ha]	[€/ha]
winter rape	winter - wheat	spring barley	spring barley	spring barley		390	38		428
winter rape	- winter - wheat	spring oat	- winter wheat	spring barley		380	38		417
winter wheat	- spring barley	spring oat				285			285
winter rape	winter - wheat	faba bean	winter wheat	spring barley		355	38	38	430
winter rape	winter wheat	spring barley	- pea	winter	spring barley	350	31	31	413

Zander et al, 2014

Utilising biological N fixation

N transfers from crop mixtures

Legume forages have a high but variable N content

Black Medic (<i>Medicago lupulina</i>)	White Clover (Trifolium repens)	Trefoil (Lotus pedonculatus)
3.8% N	3.9% N	5.4% N – high tannins

Nitrous oxide losses from forage mixtures

Intercropping

- Offers benefits of increased resource use efficiency, reduced nutrient loss and disease burdens
- But the choice of crop mixtures and their management can have a big impact on the outcomes

N losses from a legume-cereal intercrop

Case Study 4:Legumes and leguminous by-products within dairy farming systems

Parameters	Units			
On and off farm land use	ha	ha /LSU		
Harvest	tonnes/ha	DM %		
Milk yield	litres/cow	litres/ha		
Protein & Butterfat	%			
Dry matter intake	kg / cow			
Live-weight	kg / cow			
Sprays & Fertilisers	kg / ha	litres/ha		
Purchased feed &	tonnes FW	Dry matter		
bedding		%		
Nitrogen surplus	kg/litre	kg/litre		
		ECM		
Carbon footprint	kg CO2 e / kg output			

- By-product system feed components are imported onto the farm
- Home-grown system feeds are provided by crops grown on the farm
- Leguminous products represent 10% of the by-product ration and include soya bean meal.
- Legumes grown include spring beans, red clover and lucerne (alfalfa), accounting for up to 15% of the ration.

Future of the global N cycle

Atmos. Chem. Phys. Discuss., 15, 1747–1868, 2015 www.atmos-chem.phys-discuss.net/15/1747/2015/ doi:10.5194/acpd-15-1747-2015 @ Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Effects of global change during the 21st century on the nitrogen cycle

Atmospheric 4

Chemistry

and Physics

D. Fowler¹, C. E. Steadman^{1,2}, D. Stevenson², M. Coyle¹, R. M. Rees³, U. M. Skiba¹, M. A. Sutton¹, J. N. Cape¹, A. J. Dore¹, M. Vieno^{1,2}, D. Simpson⁴, S. Zaehle⁵, B. D. Stocke⁶, M. Rinaldi⁷, M. C. Facchini⁷, C. R. Flechard⁶, E. Nemitz¹, M. Twigg¹, J. W. Erisman⁹, and J. N. Galloway¹⁰

¹Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH260QB, UK ²School of GeoSciences, University of Edinburgh, Edinburgh, UK ⁸Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH93JG, UK ⁴Norwegian Meteorological Institute, EMEP-MSC-W, P.O. Box 43, 0313 Blindern, Norway ⁵Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Strausse 10, 07745 Jena, Germany ⁶Imperial College, Department of Life Sciences, Silwood Park, Ascot, SL57PY, UK ⁷ISAC-CNP, via P. Gobetti 101, 40129 Bologna, Italy ⁸INPA, Agrocampus Ouest, UMR 1069 SAS, 35042 Rennes, France ⁸Louis Bolk Institute, Hoofdstraat 24, 3972 LA, Driebergen, The Netherlands ¹⁰Department of Environmental Sciences, University of Virginia, Charlottesville, VA.

22904-4123, USA

Fertilizer Fertilizer 2010 2100 Production Production Agricultural Combustion Combustion Agricultural BNF Lightning Lightning BNF BNF BNF BNF BNF +10%20 + 10% 33 120 160 63 $5 \pm 50\%$ 7 ± 50% $\pm 10\% \pm 30\%$ ± 20% ± 30% $140 \pm 50\%$ $168 \pm 50\%$ $120\,\pm\,50\%$ $166 \pm 50\%$ LAND LAND OCEAN OCEAN Annual fixation Nr 376 Tg N y⁻¹ Annual fixation Nr 584 Tg N y⁻¹ BNF – Biological Nitrogen Fixation

Fowler et al , 2015 19

Conclusions

- There is an urgent need to increase legume production in Europe
- To achieve this we need to understand social, technical and economic barriers
- Solutions will involve innovation in the supply and processing of legume products by development of innovative new production pathways
- TRUE is well placed to support this process